Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses

نویسندگان

  • Neil D Detweiler
  • Kenneth G Vigil
  • Thomas C Resta
  • Benjimen R Walker
  • Nikki L Jernigan
چکیده

Previous reports indicate roles for acid-sensing ion channels (ASICs) in both peripheral and central chemoreception, but the contributions of ASICs to ventilatory drive in conscious, unrestrained animals remain largely unknown. We tested the hypotheses that ASICs contribute to hypoxic- and hypercapnic-ventilatory responses. Blood samples taken from conscious, unrestrained mice chronically instrumented with femoral artery catheters were used to assess arterial O2, CO2, and pH levels during exposure to inspired gas mixtures designed to cause isocapnic hypoxemia or hypercapnia. Whole-body plethysmography was used to monitor ventilatory parameters in conscious, unrestrained ASIC1, ASIC2, or ASIC3 knockout (-/-) and wild-type (WT) mice at baseline, during isocapnic hypoxemia and during hypercapnia. Hypercapnia increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice, but there were no differences between ASIC1-/-, ASIC2-/-, or ASIC3-/- and WT. Isocapnic hypoxemia also increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice. Minute ventilation in ASIC2-/- mice during isocapnic hypoxemia was significantly lower compared to WT, but there were no differences in the responses to isocapnic hypoxemia between ASIC1-/- or ASIC3-/- compared to WT. Surprisingly, these findings show that loss of individual ASIC subunits does not substantially alter hypercapnic or hypoxic ventilatory responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia.

In mammals, the ventilatory response to decreased oxygen tension in the arterial blood is initiated by excitation of specialized O2-sensitive chemoreceptor cells in the carotid body that release neurotransmitters to activate endings of the sinus nerve afferent fibers. We investigated the role of ATP acting via ionotropic P2X receptors in the carotid body function and ventilatory response to hyp...

متن کامل

Amiloride but Not Memantine Reduces Neurodegeneration, Seizures and Myoclonic Jerks in Rats with Cardiac Arrest-Induced Global Cerebral Hypoxia and Reperfusion

It has been reported that both activation of N-methyl-D-aspartate receptors and acid-sensing ion channels during cerebral ischemic insult contributed to brain injury. But which of these two molecular targets plays a more pivotal role in hypoxia-induced brain injury during ischemia is not known. In this study, the neuroprotective effects of an acid-sensing cation channel blocker and an N-methyl-...

متن کامل

Ventilatory and cardiovascular responses to hypercapnia and hypoxia in multiple-system atrophy.

BACKGROUND Loss of medullary sympathoexcitatory neurons may contribute to baroreflex failure, leading to orthostatic hypotension in multiple-system atrophy (MSA). The cardiovascular responses to chemoreflex activation in MSA have not been explored to date. OBJECTIVES To determine whether ventilatory and cardiovascular responses to hypercapnia and hypoxia during wakefulness are systematically ...

متن کامل

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus.

The ventilatory response to isocapnic progressive hypoxia and hyperoxic progressive hypercapnia in 24 diabetic patients were compared with those of sex and age matched normal control subjects. The heart rate response to hypoxia was also measured in both groups. In diabetic patients the ventilatory and heart rate responses to hypoxia were significantly lower than those in the control group (0.10...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018